Wednesday, January 24, 2018

RMSE vs. R-squared


A well-fitting regression model results in predicted values close to the observed data values. The mean model, which uses the mean for every predicted value, generally would be used if there were no informative predictor variables. The fit of a proposed regression model should therefore be better than the fit of the mean model.
Three statistics are used in Ordinary Least Squares (OLS) regression to evaluate model fit: R-squared, the overall F-test, and the Root Mean Square Error (RMSE). All three are based on two sums of squares: Sum of Squares Total (SST) and Sum of Squares Error (SSE). SST measures how far the data are from the mean and SSE measures how far the data are from the model’s predicted values. Different combinations of these two values provide different information about how the regression model compares to the mean model.
The difference between SST and SSE is the improvement in prediction from the regression model, compared to the mean model. Dividing that difference by SST gives R-squared. It is the proportional improvement in prediction from the regression model, compared to the mean model. It indicates the goodness of fit of the model.
R-squared has the useful property that its scale is intuitive: it ranges from zero to one, with zero indicating that the proposed model does not improve prediction over the mean model and one indicating perfect prediction. Improvement in the regression model results in proportional increases in R-squared.