Sunday, March 30, 2014

What statistical analysis should I use?

Number of
Dependent
Variables
Nature of
Independent
Variables
Nature of Dependent
Variable(s)
Test(s)
1
 0 IVs
(1 population)
interval & normal
one-sample t-test
ordinal or interval
one-sample median
categorical
 (2 categories)
binomial test
categorical
 Chi-square goodness-of-fit
 1 IV with 2 levels
(independent groups)
interval & normal
2 independent sample t-test
 ordinal or interval
Wilcoxon-Mann Whitney test
 categorical
 Chi- square test
Fisher's exact test
1 IV with 2 or more levels (independent groups)
interval & normal
one-way ANOVA
ordinal or interval
Kruskal Wallis
categorical
Chi- square test
1 IV with 2 levels
(dependent/matched groups)
interval & normal
paired t-test 
 ordinal or interval
Wilcoxon signed ranks test 
 categorical
McNemar
1 IV with 2 or more levels
(dependent/matched groups)
interval & normal
one-way repeated measures ANOVA
ordinal or interval
Friedman test
categorical
repeated measures logistic regression
2 or more IVs
(independent groups)
interval & normal
factorial ANOVA
ordinal or interval
ordered logistic regression
categorical
factorial
logistic regression
1 interval IV
interval & normal
correlation 
simple linear regression
ordinal or interval
 non-parametric correlation
categorical
simple logistic regression
1 or more interval IVs and/or
1 or more categorical IVs
interval & normal
multiple regression
analysis of covariance
categorical
multiple logistic regression
discriminant analysis
2 or more
1 IV with 2 or more levels
(independent groups)
interval & normal
one-way MANOVA
2 or more
2 or more
interval & normal
multivariate multiple linear regression
2 sets of
2 or more
0
interval & normal
canonical correlation
2 or more
0
interval & normal
factor analysis
Number of
Dependent
Variables
Nature of
Independent
Variables
Nature of Dependent
Variable(s)
Test(s)

Source: http://www.ats.ucla.edu/stat/stata/whatstat/
http://www.ats.ucla.edu/stat/stata/whatstat/whatstat.htm#1sampt


In statistics, Spearman's rank correlation coefficient or Spearman's rho, named after Charles Spearman and often denoted by the Greek letter  (rho) or as , is a nonparametric measure of statistical dependence between two variables. It assesses how well the relationship between two variables can be described using a monotonic function. If there are no repeated data values, a perfect Spearman correlation of +1 or −1 occurs when each of the variables is a perfect monotone function of the other.


No comments:

Post a Comment